# **BGL Gasification**



#### Content

- Technology Introduction
- BGL Development
- Operating experience
- Applications





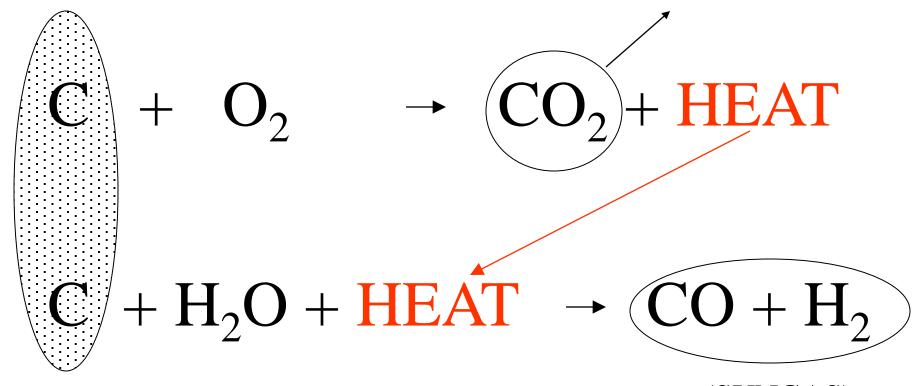
What is Gasification ?

- Gasification is conversion of a feedstock, usually coal or heavy oil, to syngas
- Syngas is mostly CO and H<sub>2</sub>
- 70%-90% of coal energy converted to syngas





## What is coal?


- Carbon
- Hydrogen
  - Oxygen
  - Nitrogen
  - Sulphur
  - Other
- Moisture
- Ash
- High Ranked
  - Anthracite
  - Bituminous
  - Sub Bituminous
  - Lignite
- Low Ranked

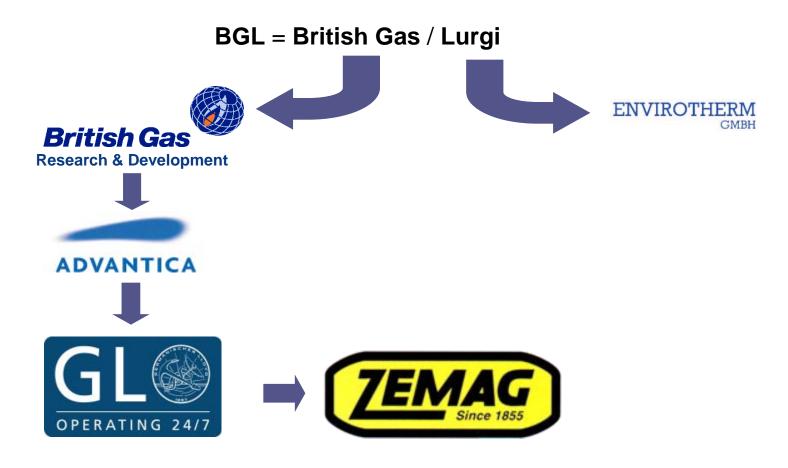






#### **Gasification Basics**

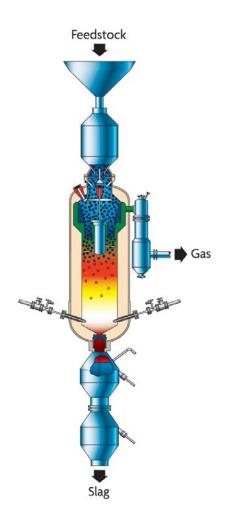









## **BGL Heritage**

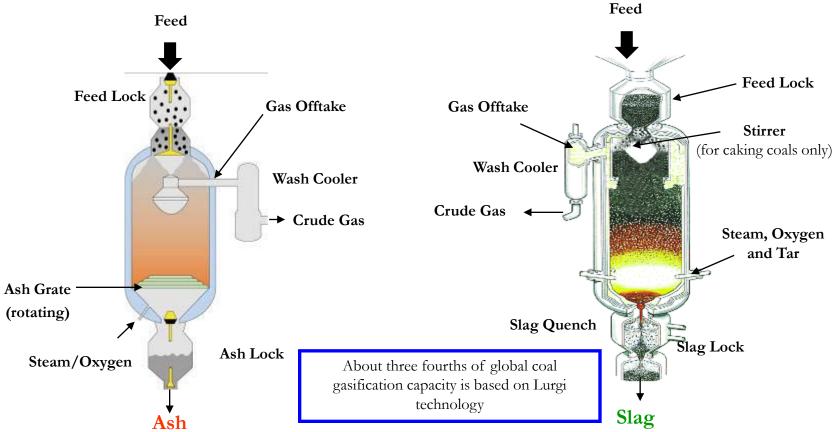

Developed by British Gas in collaboration with Lurgi for SNG production







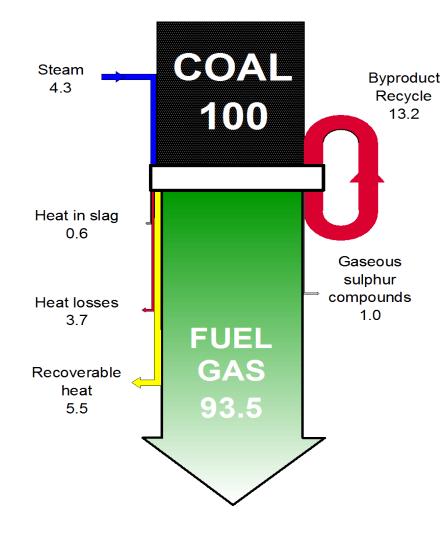
#### **BGL Gasifier**




- Fixed bed slagging gasifier
- Developed from the well proven Lurgi dry ash gasifier






#### Lurgi - Pressure Gasifier (North Dakota/Sasol type) (North Dakota/Sasol type) (SVZ type) Freed







#### Fixed Bed Gasifier Advantages



- Heat recovery from product gas by contact with coal bed
- Low oxygen consumption 50-60% of that for entrained flow gasifiers
- High cold gas efficiency
- High carbon conversion
- Low gasifier outlet temperature
- Inexpensive and well proven conventional gas cooling train
- Low CO<sub>2</sub> content in Syngas





## Typical clean gas composition

| Component          | Composition by volume % |  |  |
|--------------------|-------------------------|--|--|
| H <sub>2</sub>     | 30.8                    |  |  |
| СО                 | 57.2                    |  |  |
| $CH_4$             | 6.2                     |  |  |
| CO <sub>2</sub>    | 4.9                     |  |  |
| Other hydrocarbons | 0.4                     |  |  |
| Non-combustibles   | 0.5                     |  |  |





## BGL Background - Westfield



- Towns gas site with 4 Lurgi dry ash gasifiers
- Operated from 1960 to 1974
- Slagging gasifier developed in collaboration with Lurgi at Westfield using a series of demonstration scale gasifiers





#### Schwarze Pumpe

- Commercial production of power, methanol and heat from waste
- Commercial scale 3.6m gasifier developed from Westfield experience
- Start-up in 2000
- Successful cogasification of coal, lignite briquettes and waste feedstocks

ENVIROTHERM GMBH







### Lignite Briquette (binderless)







## Yunnan



- Pilot scale slagging gasifier commissioned in 2006
- Raw lignite coal feed
- Most gasifier components locally sourced
- Existing gas processing train handles products



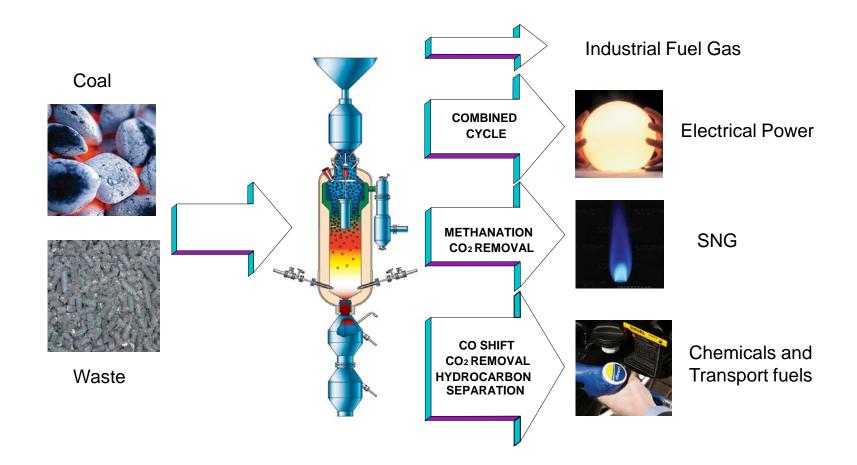


## Feedstock Comparison

|                                      | SVZ 3.6m<br>Gasifier | Westfield 1.8m<br>Gasifier | Yunnan 2.3m<br>Gasifier | Westfield 2.3m<br>Gasifier | Westfield 1.8m<br>Gasifier |
|--------------------------------------|----------------------|----------------------------|-------------------------|----------------------------|----------------------------|
| Feedstock                            | Waste + Coal         | N. Dakota Lignite          | Local Lignite           | Pittsburgh 8               | Petroleum Coke             |
| Moisture content<br>(wt%)            |                      | 41                         | 30-40                   | 6.5                        | 4.9                        |
| Typical gas<br>composition<br>(mol%) |                      |                            |                         |                            |                            |
| H <sub>2</sub>                       | 18                   | 32.6                       | 26.1                    | 27.8                       | 30.0                       |
| CO                                   | 34                   | 38.5                       | 46.5                    | 57.2                       | 59.0                       |
| CO <sub>2</sub>                      | 16                   | 18.1                       | 12.7                    | 4.0                        | 0.6                        |
| CH <sub>4</sub>                      | 18                   | 6.2                        | 8.0                     | 7.0                        | 3.1                        |
| Carbon in slag<br>(wt%)              | -                    | -                          | <0.5                    | <0.5                       | 2.2                        |





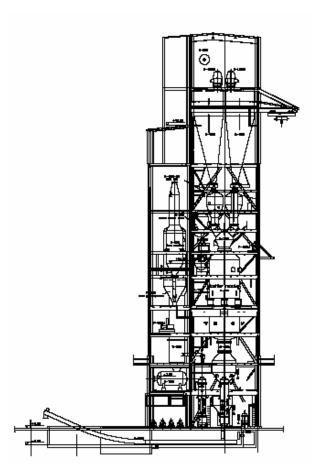

# Feedstock Flexibility

- Non-caking to strongly caking coals, UK and US
  - Ash: 0.5 21 wt%
  - Moisture: 3 28%
  - Sulphur: 0.5 5.6%
  - Chlorine: up to 0.6%
  - Size Range: 6 to 50 mm
- Metallurgical and Petroleum Cokes
- Briquetted coal
- Raw and briquetted lignite
- RDF and other waste fuels
- Total recycle of by-products
- Fuel can be switched whilst on line





# **BGL Gasifier Applications**








## Hulunbeier

- BGL selected by Hulunbeier New Gold Chemical Co. Ltd. in 2008 for a 500,000 t/year Ammonia plant (800,000 t/year Urea)
- Briquetted Lignite feedstock
- Process Design Package completed late 2008.
- Currently under construction
- Plant commissioning expected in 2011







#### Hulunbeier

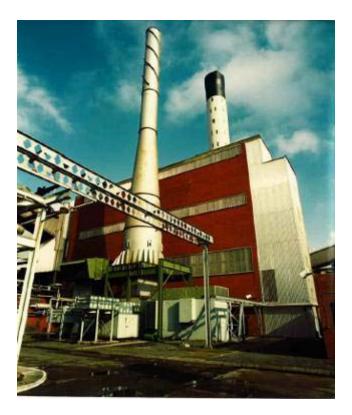


Courtesy of Hulunbeier New Gold Chemical Co. Ltd.





#### SNG and Fuel Gas


- BGL is the best technology for SNG application owing to high efficiency and presence of  $CH_4$  in product gas
  - See 8<sup>th</sup> European Gasification Conference paper
- Further SNG conversion efficiency realised through development of single stage shift and methanation HICOM
- 70% coal to SNG efficiency based on Westfield demonstration rising to 75% if based around high pressure BGL gasifier
- Process scale, high efficiency and low oxygen demand makes fuel gas application highly competitive
- South Heart Energy Development SNG project in North Dakota announced in November 2007 - planning to use 7 BGL gasifiers to produce 124 MMscfd SNG from lignite briquettes (3.33 x 10<sup>6</sup> Nm<sup>3</sup>/day)





### Power Generation

- 40-100 MWe scale of BGL makes it suitable for a range of industrial power applications
- Retrofitting to an existing GTCC is possible
- High cold gas efficiency eliminates need for integration with HRSG
- Possibilities for smaller scale units being examined







# Summary

- Highest cold gas efficiency of commercially available gasifiers
- Ability to handle a wide range of coal feedstocks, refuse derived fuel (RDF) and sewage sludge
- Low oxygen consumption, 50-60% of entrained flow gasifiers
- Moderate outlet temperature
- Conventional materials
- Excellent load following characteristics
- No fly ash produced, only a non-leaching slag
- Proven and available for commercial exploitation



